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Abstract 

We exploit firm-level data on robot adoption and use an event-study approach to study the 
unexplored relationship between robotisation and innovation. Instead of an enabling effect, 
we find a negative association between robot adoption and the probability to introduce 
product innovations, as well as their number; the results emerge using different proxy of 
product innovation. However, large-scale investments in mechanisation cancel-out the 
negative effect and show a positive association with R&D expenditure. We rationalise and 
interpret the findings suggesting that a piecewise substitutive relationship exists between 
process and product innovation. Large investments relax the product-process trade-off, as 
substantial R&D investments to accrue absorptive capacity are mobilised; as a result, they 
make less binding the allocation dilemma between implementing robot technology and 
designing and trialling new products. Finally, we discuss whether industrial robots studied 
here and in the literature feature enabling capabilities at all. The study has important 
implications for our understanding of the role of robots for firms’ operations and strategies, 
as well as for policy design.  
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1. Introduction 

Historically, mechanisation of production has always been accompanied by questions about its impact 

on the incentive to reallocate resources, with a natural focus on the substitutability of labour (Mokyr et 

al. 2015). However, labour substitution is only one of the effects of automation. In this paper, we study 

whether the adoption of robot technology influences the rate and direction of innovative activities.  

In essence, robots are capital goods. However, contemporary robots are depicted as increasingly 

‘malleable’, or flexible, capital goods – multi-purpose equipment capable of executing different tasks 

with little re-programming. Growing robot flexibility is a clear trend, as robot technology is augmented 

by other technologies characterising the fourth industrial revolution (Benassi et al. 2022; Martinelli et 

al. 2021), both hardware (e.g., sensors, or additive manufacturing technologies) and software (e.g., 

artificial intelligence algorithms). Robots become a component in larger systems, such as cyber-

physical systems and advanced digital production technologies (UNIDO, 2019). As such, it is possible 

to hypothesise that robot adoption will induce changes in firms’ behaviours that go beyond the well-

known replacement and productivity effects on employment (Autor, 2019) and that are more ‘enabling’ 

in nature. This hypothesis begins to accumulate empirical support (Hirvonen et al. 2022). At the same 

time, current robots are “the most recent iteration of industrial automation technologies that have existed 

for a very long time” (Fernandez-Macias et al. 2021) that continue to operate in specific and constrained 

environments. Hence, their enabling capability might be limited if firms are not able (or do not plan) to 

exploit it. We shed some new light on this by measuring how product innovation and R&D expenditure 

changes when robots are adopted at the firm level. 

Excluding robot vendors, for all other firms robots are process technology. Hence, robot 

adoption might be considered a form of process innovation. From this perspective, our analysis extends 

the reach of automation studies from the labour market perspective to a microeconomics of innovation 

one. Studying the interplay of robot adoption and innovation can provide insights on the more general 

relationship between process and product innovation – whether it is one of substitutability or synergy. 

At the root of process and product innovation there are different strategic considerations: process 

innovation is mainly driven by efficiency and cost cutting reasons; product innovation is mainly driven 

by the capture of value and market shares or creation(penetration) of(in) new markets (Utterback and 

Abernathy 1975; Klepper 1996; Damanpour and Gopalakrishnan 2001). While theoretical literature has 

modelled firms’ portfolio choice between product and process innovation (Lambertini 2003), the 

empirical evidence is still scant – even more so for the case of robotisation. In summary, the paper 

contributes to the growing, yet nascent, strand of studies analysing firm-level data on robot adoption 

with a unique perspective on the nexus between the adoption of industrial robots and product innovation 

performance. 

We exploit a unique dataset of Spanish firms, coming from the Survey on Firm Strategies 

(Encuesta Sobre Estrategias Empresariales, or ESEE) and implement an event-study approach (a 
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generalised diff-in-diff model) to relate different indicators of product innovation to robotisation. We 

show that robot adoption is negatively associated to product innovation in the long term. We isolate the 

effect of large- vs small-scale investments mechanisation and find that the negative association with 

product innovation disappears for large-scale investments. Firms that are located in the top quartile of 

the investment distribution experience a positive increase in R&D expenditure (but not innovation), 

while firms in the bottom quartile display a negative relationship with both product innovation and 

R&D. We interpret the findings along a few lines of reasoning and converge on the idea that a 

conditional (on the scale of investment) substitutability exists between robotisation (process change) 

and the introduction of new products. In particular, implementation costs and the returns to learning-

by-doing in process technology following robot adoption can divert resources away from product 

innovation. Furthermore, robots – even when flexible – might display enabling capabilities only when 

introduced in flexible production processes. More ‘classic’ and standardised mass production processes 

might not benefit from robots' full potential. However, even in mature industries with dis-economies of 

scope, large investments in machinery can induce a re-structuring of the production process, and 

influence talent and absorptive capacity formation – all changes that can reduce the negative impact we 

identify, as they can have spillover effects on product innovation. We take a step further by discussing 

whether the types of robots under analysis are the ‘right’ robots to induce innovation. In fact, not all 

instances of process mechanisation and robotic equipment might be malleable enough to shape 

technological opportunities and to affect the incentive to engage in new product discovery, design, and 

development. 

The paper is organised as follows: Section 2 provides a literature review that explores the main 

stylised facts of robotisation and juxtaposes three broad strands of research to construct a framework to 

guide the discussion of our results. Section 3 describes the data and the methodology we employ. 

Section 4 presents the results and Section 5 offers a discussion of the mechanisms that might be 

producing them. Section 6 concludes the paper. 

2. Relevant Literature 

The focus of our analysis is on robot technology, which is increasingly under the spotlight for its 

applications, and lately even for being a strategic asset (Nolan 2021). Wirkiermann (2022) outlines the 

distinction between mechanisation (in the 19th century), computer-based automation (in the 1980s) and 

contemporary robotisation. The importance of robots, or telerobots (Sheridan 2016), depends on their 

capacity of automating routine tasks and to act as multi-purpose tools – ultimately, to generate 

productivity gains. Robots become an interface between humans, control software, and production 

activities, although, according to the International Federation of Robotics (IFR), the diffusion of highly 

sophisticated robots that are able to complement human actions (collaborative robots, or cobots) is still 

very limited worldwide (IFR 2020). Investing in robots answers to different aims, from the reduction 
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of operating costs to the improved resilience in facing positive or negative peaks in production, passing 

through an increased flexibility and a more efficient use of resources (e.g. energy). In addressing these 

multifaceted firms’ needs, they reconfigure the very set of actions firms can engage into. As a 

consequence, robots might also be characterised by enabling capabilities.  

Despite the interest around robot technology, economists’ understanding of their technical 

features and patterns of adoption is yet limited. One reason for that has to do with the angle of analysis, 

as most of the literature on recent automation is grounded on theories of routine-biased technical change 

(Acemoglu and Restrepo 2019), which take occupations and job tasks as key units of analysis but lack 

in-depth, ‘engineering’ knowledge on robots as complex technology systems. A second, related reason 

has to do with data availability at a level, granular enough to appreciate the heterogeneity of robot 

technology. However, recent studies are starting to build a less vague picture of the implementation of 

robot technology into production activities. Focusing on German plant-level information, Deng et al. 

(2021) outline stylised facts of robot adoption, among which, the fact that robot use is relatively rare, 

the distribution of robots is highly skewed, and that robot adopters are ‘exceptional’ actors – that is, 

larger, with higher labour productivity, investing and exporting more and using more novel technology 

compared to non-robot-using plants. Benmelech and Zator (2022) confirm that robot adoption is yet 

limited, especially when compared to digital technologies. 

We build a framework for our analysis by bridging three different strands of literature that 

provide relevant insights: i) studies on firm-level automation; ii) studies on the relationship between 

product and process innovation strategies; and iii) research on the enabling effect of the adoption of 

emerging technologies on innovative activities.  

Firm level analysis of automation and robotisation. As it is the case for more aggregate-level 

research, firm-level studies of automation and robotisation have focused almost exclusively on labour 

market impacts. Humlum (2019) uses an event-study approach (on Danish administrative data) to 

measure worker heterogeneity in exposure to robot adoption. Similarly, Bessen et al. (2020) and Domini 

et al. (2021) study automation spikes and job separation rates for Dutch and French firms, respectively. 

Dauth et al. (2021) measure exposure to industrial robots for Germany apportioning data from the IFR 

using a regional labour market approach combined with worker-level administrative data; Dottori 

(2021) conducts a similar exercise for Italy. As pointed out by Acemoglu et al. (2020), new firm-level 

analysis introduces new issues as well. In particular, the detection of a productivity effect of robots can 

be, in reality, the result of a selection effect: as firms adopting robots reduce production costs, they tend 

to gain market shares. Overall, employment gains or losses will then be a result of reallocation. In fact, 

when aggregating firm-level effects, the impact on total employment seems limited to composition 

effects, with the negative or positive impact of automation on the labour share depending on the 

magnitude of labour share reduction in the few, usually large, robot-adopting firms (Autor et al. 2020). 

Exploiting more granular information, firm-level automation research began to go beyond 

effects on employment and to focus on the impact of robots on various indicators of performance. 
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Kromann and Sorensen (2019) use survey data from Danish firms to relate automation measures and 

performance, measured as labour productivity and profit to sales ratio, finding a positive relationship. 

Acemoglu et al. (2020) find that French robot adopters experience an increase in value added and 

productivity beyond a decline in the labour share. Aghion et al. (2020) measure the impact of 

automation technology (captured by expenditures on industrial equipment and machines or plant-level 

energy consumption to proxy ‘motive power’) on French manufacturing firm’s employment, wages, 

prices and profits with an event study and a shift-share setup. They find that next to a positive effect on 

employment, profits and sales increase while consumer prices decrease. Exploiting the ESEE dataset 

we also use, Koch et al. (2021) confirm that robot adopters are exceptional in the sense that those firms 

that are ex ante larger, more productive and exporting have higher likelihood of adopting robots (with 

a higher likelihood for less skill-intensive firms). Robot adoption boosts output, TFP growth, and 

exporting. Using import data on industrial robots for French firms, Bonfiglioli et al. (2020) produce 

additional evidence that robot adopters differ from non-adopters ex ante, being these larger, more 

productive firms and employing a higher share of managers and engineers. Interestingly, they find that 

demand shocks lead firms both to expand (increasing employment) and automate; hence, they stress the 

possibility that a spurious correlation exists between automation and impact on employment. Sudekum 

et al. (2020) combine industry-level (IFR) data on robot adoption with firm-level information for 

European manufacturing to study changes in the distribution of sales, productivity, markups, and profits 

within industries. They find that robotisation disproportionately benefits top firms, reinforcing the trend 

of emergence of superstar firms (Autor et al. 2020). The authors outline the possibility that robot 

adoption might slow down knowledge diffusion from frontier firms to laggards, or that superstar firms 

could be more successful in attracting high-quality labour capable of speeding-up the implementation 

of the new technology. 

Relationship between product and process innovation. A second strand of research that is 

relevant for our analysis is the economics and strategy literature on the relationship between product 

and process innovation or R&D activities. Traditionally, the two types of innovations have been 

analysed individually because of the different strategies underpinning them, which in turn answer to 

different internal and external stimuli: when competition is driven by high product differentiation, it is 

optimal to choose a product innovation strategy; when competition is mainly price driven, it is optimal 

to go for process innovation (Weiss 2003). Only recently, product and process innovation have been 

studied as strategic complements at the company level. For example, complementarities between 

process and product innovation are likely to emerge in the so-called process industries, where it is also 

more appropriate to hypothesise a relation going from process to product (Hullova et al. 2016). 

Theoretically and more in general, Lambertini (2003) finds that, for a monopolist, cost-reducing process 

R&D and product innovation are substitutes, as surplus is extracted either by reducing marginal cost 

for a given number of product varieties, or expanding variety for a given level of production costs. Lin 

(2004) contrasts this, showing that process and product R&D are negatively related only if the degree 
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of economies of scope in process R&D is low; otherwise, cost-reducing R&D is a positive function of 

product variety. Mantovani (2006) finds that monopoly profits are higher when product and process 

strategies are jointly pursued, with initial conditions determining the share of product vs process R&D. 

In a dynamic setting, Lambertini and Mantovani (2009; 2010) find that process and product innovation 

are substitutes for a monopolist at any stage of the path towards the steady state equilibrium, and 

complementary in the steady state. Li and Ni (2016) identify in the learning-by-doing rate (hence, 

knowledge accumulation regime) for product and process innovation a key parameter deciding whether 

the two activities are substitutes or complements. 

Studies on industry dynamics and evolution, and in particular those mapping industry life-

cycles, illustrate the endogenous process leading firms to transition from a focus on product innovation 

to one on process innovation (Klepper 1996). Cohen and Klepper (1996a) show that the allocation of 

resources to process or product R&D vary with firm size: process innovation induces less direct sales 

growth as they cannot be easily sold in disembodied form compared to products. Hence, smaller growth-

oriented firms will see higher return in conducting product R&D. As returns to process R&D depend 

on current output, firms growing larger will tend to shift to process R&D. Bennet (2020) suggests that 

automation is pursued with higher intensity by either leading firms or laggards depending on the nature 

of competition and the state of the market. In growing markets, cost-spreading incentives favours 

incumbents’ automation, as these are usually companies capable of bearing high fixed costs of process 

innovation by spreading them over large quantities produced. In non-growing markets, automation can 

be driven by market stealing incentives on the side of the laggards, which hope to gain market shares at 

the cost of the leading firms. In both cases, the takeaway message is that automation decisions are driven 

by a logic of ‘competition for the market’, and seem to be independent from product innovation choices. 

Empirically, Hirvonen et al. (2022) use text data to explore the product vs process tension by 

analysing the impact of advanced technology adoption in Finnish manufacturing firms. In their paper, 

advanced manufacturing technologies include computerised numerical control (CNC) machines, 

(welding) robots, laser cutters, surface-treatment technologies, measurement devices, enterprise 

resource planning (ERP), and computer-aided design (CAD) software. Rather than replacing workers, 

these technologies are adopted to boost competitive advantage; adoption of new tools lead to an 

expansion in product variety. These findings go in line with the expectation of an enabling capability 

of advanced manufacturing technologies, among which potentially robots. However, firms involved in 

the analysis are mostly smaller and medium enterprises that - as pointed out by Cohen and Klepper 

(1996a) – have ‘by design’ a higher incentive to engage in product innovation compared to process 

innovation. 

Emerging technologies and innovative activities. A third piece of the framework we are 

building consists of literature relating the use of novel technologies and innovation behaviour. The idea 

that certain technologies shape the incentive to innovate in related technologies or industries is at the 

core of the literature on general-purpose technologies (Bresnahan and Trajtenberg 1995), in which core 
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upstream technologies and downstream technologies that make use of the core ones have linked payoffs 

in R&D investments. Some technologies are what Koutrumpis et al. (2020) call ‘invention machines’ - 

what Griliches (1957) identified as ‘invention of a method of inventing’ (IMI) - as “they alter the 

playbook of innovation where they are applied” (Cockburn et al. 2019). Innovations (inventions) that 

spur further innovation (inventions) usually feature some elements of multi- or general-purpose, or a 

‘meta-technology’ nature (Agrawal et al. 2019). Being multi-purpose malleable tools, robots are a good 

candidate for the role. 

Applied literature on the impact of ICT also detected how enabling technologies open new 

room for actions at the firm level, resulting in higher productivity (Brynjolfsson and Hitt 2000). More 

recently, Brynjolfsson et al. (2021) find that a similar effect can be registered in firms adopting 

predictive analytics techniques. Focusing on Canadian firms, Dixon et al. (2021) find that robot 

adoption leads to a different type of ‘innovation’, namely changes in organisational structure: using 

robots produces a reduction in the number of managers but an increase in the span of control for those 

managers that survive the change. At an even more detailed level of analysis, Furman and Teodoridis 

(2020) show how the automation of a research task in computer vision and motion sensing research - 

achieved with the introduction of the Kinect technology - impact subsequent research productivity and 

type of research output, increasing the production of new ideas as well as their diversity.  

Closer to the focus of our analysis, Liu et al. (2020) relate the number of industrial robots (which 

they use to proxy artificial intelligence) and technological innovation at the industry level, using 

Chinese panel data for the manufacturing sector. While the coarse data structure does not permit to 

clearly identify the mechanism at work, the authors find a positive relationship between robots and 

innovation (measured as patents count), with a stronger effect for low-tech industries. Niebel et al. 

(2019) observe the relationship between use of big data analytics and product innovation at the firm 

level, for a sample of manufacturing and service companies from the German ZEW ICT survey and 

Community Innovation Survey. By reducing uncertainty and supporting decision-making with high-

quality information, the expectation is that big data analytics would help innovative activities. The 

authors find that the use of these techniques raises both the propensity to innovate as well as innovation 

intensity (measured as the share of sales from new products and services).  

The enabling capability of an emerging technology more narrowly defined is studied in 

Rammer et al. (2021), who focus on a set of artificial intelligence (AI) technologies. The authors use 

the 2018 module of the German section of the Community Innovation Survey to study the relationship 

between the use of AI in firms and product and process innovation. While AI is used by a very small 

share of firms, those adopting AI (and, in particular, the firms that contribute with in-house efforts to 

the development of AI solutions) use it to innovate, especially product innovations that are new to the 

market. The analysis is limited by the cross-section nature of the data, but it is useful to shed light on 

the fact that only certain specific technologies have enabling capabilities. 
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In summary, linking three strands of literature we have at hand a rich picture of the profile of robot 

adopters, as well as of the impacts following the adoption of robot technology. First, firm-level studies 

of automation and robotisation find evidence of self-sorting: adopters are already better performing 

firms before automation, and automation provides a further boost to performance. Second, whether 

robots are used only as a process technology or also with the goal of upgrading product offering depends 

on the forces set in motion by robotisation inside the firm, e.g. adjustment of production, learning, 

changes in market strategy. Third, the enabling capability of a technology might depend on its very 

technical features: software technologies such as AI or advanced ICTs such as predictive analytics can 

be used as a supporting tool to reduce uncertainty and to guide innovation resource allocation decisions. 

Taken all together, it is possible that robot technology might help to experiment with new product 

designs and prototypes given its malleability; however this capability might be a feature of a subset of 

robots only, or one companies are not able or willing to exploit fully.  

3. Data and Empirical Strategy 

Our analysis covers the period 1991-2016, a period during which there have been significant 

transformations in the processes of production of firms worldwide. Industrial robots played an important 

part in these changes. Acemoglu and Restrepo (2020) provide evidence of a fourfold rise in the stock 

of (industrial) robots in the United States and western Europe between 1993 and 2007, while Graetz 

and Michaels (2018) show the dramatic fall in robot prices, which halved (and decreased even more 

when quality-adjusted) roughly in the same period for a sample of six advanced economies.  

The adoption of robots has been quite heterogeneous among countries in the last decades 

(OECD, 2019). Spain, which in 2019 was still the 11th country worldwide for installation of industrial 

robots (number of robots per 10000 employees), has a specific trend in robotisation. Notably, it has 

experienced a surge of operational robots adoption by a factor of five in the period 1993-2000, mostly 

due to the large diffusion of automation in the automotive industry.  

For our analysis, we draw on longitudinal firm-level data from a survey of Spanish 

manufacturing companies: the Encuesta Sobre Estrategias Empresariales (ESEE, Survey on Firm 

Strategies). ESEE covers a rich set of firm-level information over a long time period (1990-2016 to 

date). ESEE is a survey carried out annually by the SEPI Foundation2 and comprising nearly 2,000 

Spanish manufacturing companies. Previous studies have highlighted how ESEE data cover 

approximately 22% of total Spanish employment in manufacturing and that there is a bias towards large 

companies, as it covers the full population of manufacturing firms with more than 200 employees, 

whereas only a representative sample of SMEs (between 10 and 200 employees) is covered (Barrios et 

                                                 
2 https://www.fundacionsepi.es/investigacion/esee/en/spresentacion.asp (last accessed 10 April 2022) 
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al. 2003; D’Agostino and Moreno 2019). ESEE has been extensively employed as a data source for 

applied studies in economics and management at the firm level.3 

The ESEE questionnaire includes information on a wide range of topics, such as market and 

product characteristics, financial data and production activities. For the purpose of our research, ESEE 

data is ideal because it contains: (i) information on the adoption of industrial robots for firm day-to-day 

production activities; and (ii) information on firm’s product innovation activities. Several variables 

within ESEE data are collected every four years and refer to the previous three/four-year period. Our 

final sample entails 3,304 firms in the seven relevant periods between 1991 and 2016 (1991-1993, 1994-

1997, 1998-2001, 2002-2005, 2006-2009, 2010-2013, and 2014-2016). 

Our aim is to assess the association of robotisation and product innovation performance. For 

sake of simplicity, we write our relation of interest as follows: 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛௜௧ ൌ 𝛽𝑅𝑜𝑏𝑜𝑡௜௧ ൅ 𝛾𝑿𝒊𝒕 ൅ 𝛼௜ ൅ 𝜏௧ ൅ 𝜖௜௧  (1) 

 

Product innovation is captured in different ways throughout our empirical analysis. The first 

two variables measuring product innovation at the firm level are very much in line with the measures 

employed by a large part of the literature and available from the Community Innovation Survey (CIS) 

(e.g. Ballot et al 2015; Frenz and Prevezer 2012). Respondent firms were asked whether they introduced 

new (or significantly improved) product innovations and the number of these product innovations. 

Operationally, we define the probability of introducing a product innovation as a dummy variable taking 

value one if this happened at least once during the relevant four-year period, and zero otherwise. 

Similarly, the number of product innovations is measured as the average number of product innovations 

over each four-year period. Given the highly skewed nature of the variable, we employ its naturally log-

transformed value. In an attempt to measure different nuances of product innovation, we employ three 

indicator variables capturing (in a binary way) whether product innovation is due to: (i) the introduction 

of new materials; (ii) the introduction of new parts or intermediate products or (iii) the introduction of 

new product functions. 

𝑅𝑜𝑏𝑜𝑡௜௧ is a variable measuring whether firm 𝑖 has adopted any industrial robot in period 𝑡.  

Following Koch et al. (2021), we construct an indicator variable equal to one if the firm uses robots and 

zero otherwise. Information for this variable is available every four years, starting in 1991. 

In Equation 1, 𝑿𝒊𝒕 is a vector of time varying characteristics of the firm that can affect product 

innovation performance and may be associated with the decision to adopt robot technologies. The 

inclusion of this vector allows controlling for omitted variable bias driven by the observables. 

Furthermore, this allows us to control for variables related to the impact of the industry life-cycle on 

                                                 
3 For a comprehensive list of publications see 
https://www.fundacionsepi.es/investigacion/esee/en/sesee_articulos.asp (last accessed 10 April 2022) 
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innovation, as discussed in the literature review. More in details, we control for a set of firm‐level 

characteristics including firm size, measured as the average number of full-time equivalent employees 

in the relevant four-year period. We also include two measures of investment. First, we measure the 

total expenditure in R&D as the sum of intra- and extra-mural expenditures in the period. Second, we 

include the investment in industrial machinery. Both measures have been deflated by using the industry-

level consumer price index provided by the Spanish statistical office (instituto nacional de estadística) 

(with 2015 as base year). In addition, we control for the share of foreign ownership (both as direct and 

indirect foreign capital participation) over the relevant time period. We also account for the exposure 

of the firm to international markets by including the share of the total value of exports over sales in the 

relevant period. Finally, we introduced a set of period fixed effects controlling for time varying shocks 

which can jointly affect the firms in our sample (e.g. business cycle effects). All the controls have been 

lagged by one year to mitigate reverse causality problems and have been transformed in natural 

logarithms. The coefficient 𝛼௜ captures the time invariant firm heterogeneity that may be associated to 

both automation and innovation performance and is generated also by unobservable factors, like 

managerial orientation and baseline productivity. With 𝜏௧ we also control for time shocks that are 

common to all the firms in our sample. 

The parameter of interest 𝛽 captures the impact of robotisation on the probability to introduce 

a product innovation and on the (log transformed) number of product innovations, our core dependent 

variables. We estimate Equation 1 with a linear model, which amounts to a linear probability model 

when the dependent variable is binary. 

We account for the fact that robotisation can have an impact on the innovation of the firm over 

a longer time period which extends beyond its immediate implementation – as robot adoption might 

induce a dynamic reconfiguration of firm processes, incentives and, thus strategies, in the medium and 

long run. In light of this, we estimate different versions of Equation 1, which include the lagged adoption 

of robot technologies (with a 4-year and an 8-year time lag).   

Drawing from Koch et al. (2021) we improve our analysis accounting for the fact that robot-

adopters may be systematically different from non-adopters. Table 1 reports some descriptive statistics 

on relevant characteristics across the two groups (adopters vs non-adopters). As expected, differences 

are relevant and always statistically significant. Similarly, to what has been identified in the literature 

(Deng et al. 2021), firms adopting robots tend to innovate more in products, are larger, invest more in 

machinery and R&D and are more internationalised. 

 

[TABLE 1 ABOUT HERE] 

 

In order to better control for selection bias into adoption of robot technologies, we rely on a 

model with leads and lags under a difference-in-difference approach. Building upon established 
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approaches, we estimate a two-way fixed effects (TWFE) model with leads and lags (distributed-lag 

model) which controls for a treatment occurring at different points in time (Angrist and Pischke 2008; 

Autor 2003; Cerulli and Ventura 2019; Cheng and Hoekstra 2013). Notably, we estimate the following 

model: 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛௜௧ ൌ 𝛽ାସ𝑅𝑜𝑏𝑜𝑡௜௧ାସ ൅ 𝛽଴𝐷௜௧ ൅ 𝛽ିସ𝑅𝑜𝑏𝑜𝑡௜௧ିସ ൅ 𝛽ି଼𝑅𝑜𝑏𝑜𝑡௜௧ି଼ ൅ 𝛾𝑿𝒊𝒕 ൅ 𝜇௜ ൅ τ୲ ൅ 𝜖௜௧ (2) 

 

In Equation 2, 𝛽ାସ captures the effect of robotisation one period (i.e. 4 years) before it actually occurs. 

In other terms, 𝛽ାସ denotes the anticipation effect of robotisation. 𝛽ିସ, and 𝛽ି଼ capture the lagged effect 

of robot adoption, in other terms the effect of robots one and two periods (4 and 8 years)4 after the 

adoption. All in all, the diff-in-diff approach that we implement combines the capacity to control for 

group differences (driven by unobservables) between adopters and non-adopters, observable 

characteristics of the firm and unobservable time invariant features that are captured by individual fixed 

effects. Standard errors are clustered at the firm level. We also test for the parallel trend assumption by 

checking whether the lead is not different from zero (our H0). If we fail to reject the null hypothesis: 

this would suggest that before the treatment the adopter and the non-adopters were subject to common 

trends conditional on observable and unobservable characteristics. 

Although the TWFE estimator has been standard practice in the applied econometrics literature 

in the past decade, recent developments have shown that this may be biased in the presence of time-

varying treatment effects (Cunningham 2021; Goodman-Bacon 2021). Hence, our estimation strategy 

could report biased estimates due to the different timing of adoption of robot technologies in our sample 

of companies (between 1994 and 2014), particularly if the type of robots adopted were different in 

nature or the firms self-selecting into robot adoption are extremely different depending on the year of 

adoption. Additional complications can be posed by the presence of reversals: firms that during the full 

period of observation switch in and out of robot adoption. In order to address said issues and provide 

robustness to our results, in a set of robustness checks we implement a recent estimator proposed by De 

Chaisemartin and d’Haultfoeuille (2022). This is one of the most flexible event study estimators to date, 

as it allows for treatment switching (units can move in and out of treatment status) in addition to time-

varying, heterogeneous treatment effects. Reassuringly, as will discuss in the next section, our core 

results are confirmed.  

 

                                                 
4 The first (1991-1993) and the last time window in our dataset (2014-2016) cover a three-year time span each 
instead of a four-year window. While the first covers by construction of the ESEE survey a three-year time span, 
we have to rely on a three-year window for the last window due to the lack of available data for the fourth year at 
the time of the writing.  
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4. Results 

At the outset, we provide evidence from standard fixed effect estimations. Table 2 focuses on the effect 

of robotisation on the probability to introduce a product innovation. We investigate the effect of 

robotisation at time t, as well as the effect of a lagged (4- and 8-year) adoption of robots. As far as the 

controls are concerned, once controlling for unobserved heterogeneity, R&D expenditure emerges as 

the only predictor that is exerting a positive and significant effect across the different specifications. On 

average, a 1 percent increase in R&D expenditure is associated with a 2.5-2.7% increase in the 

probability to introduce product innovations. When turning our attention to the effect of robotisation, 

we notice two main aspects. First, the effect of robotisation is not immediate, but emerges after 4 

(Column 2) or 8 (Column 3) years. Second, the effect of robotisation is detrimental for the probability 

of introducing a product innovation. 

 

[TABLE 2 ABOUT HERE] 

 

A less clear picture emerges when we consider the other main dependent variable, i.e. the log 

transformed number of product innovations introduced by the firm in a 4-year period (Table 3). Here 

we notice a general loss of significance, especially for the 4-year lagged robotisation while the 8-year 

lagged adoption is only barely insignificant at the conventional thresholds (p-value of 0.106). 

Combining what emerges from Table 2 and Table 3, it seems that the adoption of robot technologies 

does not trigger innovation. In fact, when looking in particular at the proclivity of introducing new 

products, we notice that this seems to be reduced as a result of robot adoption. We also observe that the 

adoption of automation technologies takes time to exert an impact.  

 

[TABLE 3 ABOUT HERE] 

 

As mentioned in Section 3, our empirical analysis which is based on a TWFE estimator benefits from 

the possibility to control for systematic (unobservable) differences between adopters and non-adopters 

of robot technologies. Results shown in Table 4 enrich the evidence coming from the standard fixed-

effects regressions. In particular, when focusing on the impact on the probability to introduce a product 

innovation (Column 1) we confirm the negative effect of robotisation, which consolidates and gets more 

significant as we consider longer time lags. The adoption of robot technologies decreases the probability 
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to conduct product innovation by 9.3% 8 years later. Similarly, robotisation is found to have a negative 

impact on product innovation, when the latter is captured through the number of new products 

introduced in a four year period (Column 2). On average, robot adoption decreases, after 8 years, the 

number of new products introduced into the market by 0.15%. This is consistent with the fact that 

robotisation is found to contract the innovative effort of the firm, captured by the R&D investment 

(Column 3). On average, the adoption of robot technologies is associated with a 0.85% decrease in 

R&D spending 8 years later. 

 

[TABLE 4 ABOUT HERE] 

 

In Table 5, we are able to provide a closer look at the effect of robotisation on the probability to 

introduce different types of product innovation. While leaving unaffected the introduction of products 

with new material (Column 1), results show that again after a certain amount of time (at least 8 years) 

the adoption of robot technologies reduces the probability that the firm introduces different types of 

new products, which are characterised by new components (Column 2) or new functions (Column 3). 

 

[TABLE 5 ABOUT HERE] 

 

Finally, in order to delve more deeply in the analysis of the relation between robotisation and product 

innovation strategy we ran our estimates resorting to a proxy for the magnitude of robot adoption.  Our 

aim is to check whether the size of the investment in robotisation affects its relation with firm 

innovation. In particular, drawing on Aghion et al. (2020), we exploit the information on the size of 

investment in machinery to infer whether robotisation is a small- or large-scale one. We flag small-

scale robotisation when the adoption of robots coincides with an investment in industrial equipment 

within the first quartile, while large-scale robotisation refers to investment in industrial equipment in 

the last quartile of the distribution. In the case of small-scale investment (Table 6), we observe the same 

results described above, where robotisation is reducing firm innovation in the long run, as well as R&D. 

For large-scale investment (Table 7), we continue to find no enabling effect on product innovation. 

Nevertheless, we note the disappearance of the significance associated with the negative coefficient. 

We also find a positive and significant effect that large-scale investment seems to exert on the R&D 

investment of the firm. The increased R&D expenditure which does not result in an increased innovation 
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seems to suggest that such an innovation effort is aimed at absorbing the changes imposed by the 

implementation of novel automated production processes.  

 

[TABLE 6 ABOUT HERE] 

 

[TABLE 7 ABOUT HERE] 

 

As mentioned in Section 3, we check for the robustness of our results when accounting for the time-

varying treatment (i.e. robotisation) effects as well as for the fact that the treatment (i.e. robotisation) 

may be heterogeneous across time periods and for the possible issues arising from the presence of 

treatment-switchers or reversals (e.g. Cunningham 2021; Goodman-Bacon 2021; de Chaisemartin and 

d’Haultfoeuille 2022). Table A1 in the Appendix confirms the heterogeneity across firms’ cohorts in 

the adoption of robot technologies. Figures A1-A4 graphically report the results emerging from the 

estimator developed by de Chaisemartin and d’Haultfoeuille (2022). These largely confirm our 

evidence. The adoption of robot technologies is significantly and negatively associated to the 

probability of product innovation and the number of new products introduced into the market (Figure 

1). Robust results also emerge for the different types of product innovation introduced (Figure 2). 

Similarly, Figure 3 and 4 confirm the evidence presented above for the effect of small- and large-scale 

investments on innovation outputs (both in terms of probability and number of innovations). While 

Figure 4 confirms the effect on R&D for large-scale investments too, we observe that the association 

between the adoption of robots and investment in R&D, albeit with a negative sign, loses significance 

in the baseline regressions (Figure 1 – bottom left panel) and for small-scale investment (Figure 3 – 

bottom left panel).  

5. Discussion 

We advance some arguments to rationalise our findings. These insights are meant to highlight some 

general mechanisms at work in the interplay between process and product innovation, as well as to 

guide further analysis.  

Robot adoption influences the process-product innovation trade-off. A first argument is 

that robotisation and product innovation might be processes running in parallel, responding to different 

strategic logics and incentives within a firm. Robotisation as process innovation aims at cost reduction 

and can be driven by cost-spreading incentives (Cohen and Klepper 1996b). Furthermore, it can be seen 

as an instantiation of localised technical change (Atkinson and Stiglitz 1969): hence, its impact might 
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be confined to the organisation of operations along the production process (Hopp and Spearman 2011) 

without spilling over to other firm activities. Instead, a product innovation strategy responds to the logic 

of value creation and capture. While being related to different strategic levers, the two activities compete 

for the same pool of resources inside a firm. This can turn product and process innovation decisions 

into substitutes. In fact, in our data, a negative relationship between robotisation and product innovation 

emerges in the medium and long run. Given limited (financial, managerial, time) resources, firms solve 

an allocation problem choosing between two alternative strategies, namely whether to purchase and 

implement new capital goods such as robots, or to develop new or improved products. In this context, 

investments as well as management attention dedicated to fine-tune new robotic processes might shift 

away focus from product innovation. As robot technology is not ‘plug-and-play’, adoption might require 

organisation adjustments and the formation of specific capabilities, which might high returns to 

knowledge accumulation and imply dis-investments from product-innovation-related activities. This 

argument fits with what is suggested in the model by Li and Ni (2016), where the two activities become 

substitutes if the rate of knowledge accumulation is higher for process innovation – in our case, after 

robot adoption. The fact that the negative effects appear a few years after robot adoption takes place 

could be the result of inertia in absorbing sunk investments (Peters and Trunschke 2021): older product 

innovation investments, or current investments already planned in the past generate novelties with a 

delay that overlaps with new process investments. In sum, the trade-off between product and process 

strategy is hidden for some years, until it starts to ‘bite’. 

A more indirect circuit through which substitutability can materialise relates to the flows of 

labour induced by robot adoption. First, the ‘learning-by-adopting-robots’ effect can direct human 

capital formation away from tasks related to product innovation. Second, as detected in the literature 

(Acemoglu et al. 2020), robotisation reduces the overall labour share at the firm level. Potentially, the 

decrease of labour costs for the factory floor could make room for expanding employment in high-skills 

functions, including the design and prototyping of new products. However, the outflow of labour might 

include workers employed in different, non-overlapping activities, including some involved in product 

innovation. This will happen especially when the task vector composing some occupations feature 

activities related to both process and product innovation. The migration of talent induced by the 

adoption of process technology might spill over to loss of talent in product-related tasks: robotisation 

might improve firms’ exploitation capabilities (better processes) while de-skilling them with respect to 

exploration (new ideas and designs) capabilities.  

In our case, considering a substitutive relationship between process and production innovation 

implies that the more resources are invested in robotisation, the lower the effort allocated to product 

innovation, even if with a lag. Instead, what our results uncover is a less trivial relationship, which 

seems to have a piecewise nature: high investment levels in machinery cancel-out the negative impact 

we identified. If a piecewise substitutive relationship exists, at a high enough level of investments in 

robots we should expect a relaxation of the trade-off between allocating resources to process versus 
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product innovation, which is precisely what we observe. This suggests the possibility of a conditional 

product-process innovation substitutability. The condition could be the existence of a minimum 

investment threshold, capturing an essential enabling condition for firms to operate robot process 

technology while continuing innovating. We do not interpret this threshold in terms of firm size, as we 

control for this covariate in our empirical setting. Instead, the threshold can be a direct mapping of the 

rate of accretion of absorptive capacity. As absorptive capacity is often developed through formal 

innovative activities, as it is one of the ‘two faces’ of R&D (Cohen and Levinthal 1989), the moderation 

effect of large investments in mechanisation on product innovation should go hand in hand with an 

increase in R&D expenditure. This goes very much in line with our findings. Large investments in 

robotisation might produce economies of learning which compress the time needed for robots’ 

installation, accelerate the absorption of the transaction costs incurred when trialling the new process 

technology and, thus, make the product-process trade-off less binding.  

In summary, robot adoption at a small scale refocuses firms’ attention and effort away from 

product innovation in a persistent way. However, large-scale investments seem to induce a more 

profound re-organisation of production, which requires the development of absorptive capacity. This 

leads to increasing R&D expenditures. The resulting economies of learning can spill-over on product 

innovation activities, cancelling-out the negative impact following the narrowing of attention to process 

change.  

Robots adopted are not flexible enough to enable product innovation. A different take at 

our results is to factor-in the level of sophistication of robots. The hypothesis that robotisation as process 

innovation could induce product innovation is grounded on an enabling view of advanced robots in 

virtue of their malleability. The underlying mechanism would be that flexible production technology 

counteracts the pressure exerted by dis-economies of scope, making product variety economically and 

technologically viable.  

This will happen only if robots aid variety expansion and product diversification more than they 

accelerate mass production; otherwise, the prevailing pressure would be to focus capacity on existing 

product designs, resulting in a stagnation or decrease in product innovation. An interpretation of this 

mechanism could be in terms of selection in the product portfolio: if robots are flexible enough, they 

will favour product repositioning; at the same time, they create an incentive for the exit of mature 

product lines that cannot be refreshed. Automation technology covered in our dataset likely misses the 

most recent wave of malleable, smart technologies while capturing more traditional process 

improvements. This is a possibility not limited to our sample: as the IFR (2020) points out, the share of 

collaborative robots (one the best candidates to the role of malleable equipment) is yet small. Following 

this argument, the negative baseline impact we detect on product innovation might be due to the fact 

that we relate inflexible capital goods and product innovation, where the former tends to create 

production economies only on those product lines that robots are designed to produce. Finally, and in 

any event, product innovation is not necessarily an outcome of the use of malleable capital goods: 
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malleability is possibly being used to make a single piece of equipment executing multiple functions in 

already existing production processes, rather than to experiment with new ones. 

6. Conclusion 

In this paper, we exploited firm-level data on robot adoption to study the unexplored relationship 

between robotisation and innovation. As robotisation activities are a case of process innovation in which 

companies adopt flexible capital goods, our study is essentially assessing the nature of the interplay 

between recent instances of process and product innovation. Given the features of the current wave of 

robotisation, one could hypothesise an enabling effect on product innovation, with entry of new 

varieties, designs, and in general differentiation aided by the availability of smart production tools. 

Adopting an event-study approach, instead of an enabling effect, we find that robot adoption 

produces a persistent negative effect on product innovation, regardless of the indicator chosen to 

measure it. Interestingly, the size of the investments in mechanisation after a certain threshold cancels-

out the negative effect, while exerting a positive effect on R&D expenditure. Following the literature, 

we rationalise and interpret the findings by exploring different hypotheses. Theory suggests that process 

and product innovation can be substitutes or complements under different settings. Based on our 

evidence, we suggest a piecewise substitutive relationship. Large investments relax the product-process 

trade-off, as substantial R&D investments to accrue absorptive capacity are mobilised, and the learning 

economies and spillovers they generate make less binding the allocation dilemma between 

implementing robot technology and designing and trialling new products.  

As we detect persistent effects over the medium and long run, structural dynamics might be 

playing a role beyond trade-offs in strategic allocation of resources. For example, according to industry 

evolution models (Klepper 1996), the ratio of product to process innovation tends to decrease 

endogenously as industries and markets transition from birth to maturity. From this angle, robotisation 

does nothing but reinforce industries’ incentive to engage in their ‘classic’ strategy: exploiting dynamic 

economies of scale by focusing on cost reduction, which, in turn, allows for capacity expansion over a 

small set of (standardised) products. However, our empirical setting takes that into account by 

introducing an extensive set of controls, and, therefore, we rule out this set of explanations.  

To our knowledge, this paper is the first expanding the literature on automation to the 

microeconomics of innovation and firms’ strategic decision making. While exploratory in kind, our 

results suggest that non-linear mechanisms are at work within companies when robots are used to re-

organise production activities. It is important to remark that we cannot easily generalise the mechanisms 

we hypothesised. Spain (the focus of our investigation) is a peculiar context, which experienced a surge 

of robotisation in the 1990s in large part due investments by the automotive industry following a 

reorganisation of its supply chain. Hence, a particular attention should be devoted to the country-

specific patterns of industrial transformation. Still, we maintain that the non-positive impact of 
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robotisation on product innovation can shed some light on how the most recent phase of mechanisation 

of production influences other key strategies at the firm level. 

Robotisation seems to be capable of breaking a product-process trade-off only in case of very 

large investments, which capture either the development of capabilities as a requirement as well as by-

product of implementation, or the transition towards different (more flexible) modes of production that 

can reap the fully benefits of flexible robots. It is important to stress that most of the robotisation 

analysed in our empirical setting belongs to an early wave of robots used in the industrial plants. The 

specific type of robots adopted do matter. In particular, innovation-inducing robots are those 

characterised by the feature of being research tools, invention machines, or IMIs. These types of robots 

are used to aid the search process over, for example, the space of materials to be employed or the space 

of designs to be trialled and prototyped. Industrial robots such as the majority of those captured by our 

data might not completely lack the capability to enable new activities; however, they are not IMIs, and 

have less scope for what concerns facilitating innovation-related search. New IMIs, such as certain 

types of AI algorithms, are mainly software technologies, which are used in knowledge-intensive 

domains and are not yet seamlessly integrated in the architecture and functionalities of industrial robots. 

By contrast, robots are employed in the manufacturing sector to increase the rate of execution and the 

precision of factory floor tasks under specific conditions (Combemale et al. 2021). 

Beyond firm strategy, our analysis has implications for policy. This focus is important and 

timely, given the many policy packages around the tenets of Industry 4.0 discussed and implemented 

in different European countries5. In general, our results suggests that if the policy goal is to increase 

rate and direction of innovation, then facilitating equipment acquisition through, for instance, loans or 

subsidies might not serve the purpose, or even generate unexpected negative effects. Interventions of 

this kind might succeed only when (i) they are easing the transition to the use of those specific robots 

that have enabling capabilities and (ii) they are substantial enough in magnitude to allow companies to 

reach the minimum investment threshold that cancels-out negative incentives to engage in product 

innovation. Concerning (i), diffusion policies directed at smart robots, collaborative robots and similar 

flexible technologies should first assess whether firms really demand or seek to deploy this kind of 

capital goods, in order to avoid resource misallocation. In the case of (ii), policies in this domain might 

be successful when the interventions are targeted to those actors that cannot reach high investment 

levels by themselves (e.g. newer and smaller firms), or when they are directed at absorptive capacity 

formation. Policy makers should be wary of the degree of sophistication of the production technologies, 

in order to get a sense of the broad direction of the relationship between process and product strategies 

and, hence, to time actions appropriately. Policies of horizon scanning for new enabling technologies 

                                                 
5 For example, the financial support for R&D&I in the field of Industry 4.0 in Spain 
(https://www.mincotur.gob.es/portalayudas/industriaconectada); the Industry 4.0, now Transition 4.0 
programme, in Italy (https://www.mise.gov.it/index.php/it/transizione40) (last accessed 10th April 2022).  
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combined with surveys of firms’ needs, as well as policies helping the formation or hiring of skills 

matching product innovation tasks might be more effective in a context such as the one we studied.  

Future research has the task to focus more explicitly on the most recent automation waves, as 

well as to go more in-depth into the ‘nano’ dimension of what happens at the factory floor level where 

robots are implemented, using an ‘insider econometrics’ approach (Ichniowski and Shaw 2003). Case 

studies focusing on how malleable capital is embedded into production as well as research and decision 

processes will help to shed further light on the relationship between robotisation and innovative 

activities. 
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Table 1. Summary statistics by robot adopters / non-adopters (n=9252) 

 Non-adopters 
[n=8093] 

Adopters 
[n=1159] 

Significance  
difference test 

Number of product innovations 1.88 3.11 *** 
 [15.11] [23.9]  

New product introduction 0.3 0.44 *** 
 [0.46] [0.5]  

FTE employees 126.5 342.8 *** 
 [308.8] [616.4]  

R&D investment (thous.) 258.23 1156.5 *** 
 [1700] [5330]  

Investment in machinery (thous.) 803.5 2705.2 *** 
 [3706.46] [8679.64]  

Foreign ownership (%) 11.36 24.82 *** 
 [29.622] [40.743]  

Export intensity 0.15 0.27 *** 
 [0.24] [0.27]  

Notes: The entries are means and standard deviations of firm level data for the sample used the estimation of equation 1. Test scores report 
significance levels of i) t-tests on the equality of means for FTE employees, R&D investment, investment in industrial equipment, Foreign 
ownership and Export intensity; ii) Wilcoxon-Mann Whitney test for the number of product innovations given the non-normally distributed 
nature of the variable and iii) chi-squared test for new product introduction due to the categorical nature of the variable. * p<0.10, ** p<0.05, 
*** p<0.01 
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Table 2. Robotisation and probability of product innovation: fixed effects regression 
 (1) (2) (3) 

Robot -0.014   
 [0.017]   
Robot t-4  -0.056***  
  [0.021]  
Robot t-8   -0.077*** 
   [0.030] 
R&D Exp 0.027*** 0.025*** 0.025*** 
 [0.002] [0.002] [0.003] 
Size 0.000 0.000 0.000 
 [0.000] [0.000] [0.000] 
Export Int 0.083 0.089 -0.036 
 [0.070] [0.085] [0.116] 
Foreign Own 0.003 -0.002 -0.008 
 [0.009] [0.012] [0.017] 
Invest Mach 0.006*** 0.004** 0.004 
 [0.001] [0.002] [0.003] 
Constant 0.223*** 0.260*** 0.255*** 
 [0.024] [0.031] [0.043] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 46.666 35.247 22.463 
R-sq 0.212 0.229 0.239 
N firm-year obs 9339.000 6154.000 3757.000 
N firm-year 3299.000 2405.000 1518.000 

Notes: Standard errors are clustered at the firm level. Estimation is by the within estimator. The dependent variable is a dummy variable taking 
value one when the firm introduced new (or significantly improved) products at least once during the relevant four-year period, and 0 
otherwise. All regressions include controls for R&D expenditure, firm size, investment in industrial equipment, export intensity, foreign 
ownership and year dummies. * p<0.10, ** p<0.05, *** p<0.01 
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Table 3. Robotisation and number of product innovation: fixed effects regression 

 (1) (2) (3) 
Robot -0.039   
 [0.029]   
Robot t-4  -0.045  
  [0.035]  
Robot t-8   -0.075 
   [0.046] 
R&D Exp 0.031*** 0.026*** 0.020*** 
 [0.003] [0.003] [0.004] 
Size 0.000 0.000** 0.000 
 [0.000] [0.000] [0.000] 
Export Int 0.059 0.025 0.003 
 [0.116] [0.133] [0.154] 
Foreign Own 0.010 0.000 0.012 
 [0.017] [0.020] [0.019] 
Invest Mach 0.003 0.005 0.002 
 [0.003] [0.003] [0.004] 
Constant 0.230*** 0.275*** 0.336*** 
 [0.046] [0.052] [0.067] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 20.513 15.215 8.473 
R-sq 0.125 0.130 0.136 
N firm-year obs 9252.000 6131.000 3741.000 
N firm-year 3289.000 2400.000 1514.000 

Notes: Standard errors are clustered at the firm level. Estimation is by the within estimator. The dependent variable is the log-transformed 
number of new (or significantly improved) products introduced during the relevant four-year period. All regressions include controls for R&D 
expenditure, firm size, investment in industrial equipment, export intensity, foreign ownership and year dummies. * p<0.10, ** p<0.05, *** 
p<0.01 
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Table 4. Robotisation, product innovation and R&D: lead-lag specification 
 (1) (2) (3) 

Robot t+4 -0.003 -0.027 0.175 
 [0.034] [0.055] [0.250] 
Robot -0.046 -0.042 0.397 
 [0.033] [0.054] [0.304] 
Robot t-4 -0.047 -0.095 0.343 
 [0.038] [0.058] [0.331] 
Robot t-8 -0.093** -0.154** -0.848** 
 [0.042] [0.075] [0.371] 
R&D Exp 0.027*** 0.018***  
 [0.004] [0.005]  
Size 0.000 0.000 0.004*** 
 [0.000] [0.000] [0.001] 
Export Int -0.195 -0.130 1.920 
 [0.151] [0.209] [1.630] 
Foreign Own -0.014 0.019 -0.283 
 [0.027] [0.034] [0.190] 
Invest Mach 0.002 0.003 0.056 
 [0.004] [0.006] [0.037] 
Constant 0.318*** 0.392*** 4.060*** 
 [0.061] [0.101] [0.605] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 8.153 4.747 2.693 
R-sq 0.192 0.083 0.179 
N firm-year obs 2304.000 2301.000 2304.000 
N firm-year 983.000 983.000 983.000 

Notes: Standard errors are clustered at the firm level. Estimation is by TWFE estimator. The dependent variable is the probability to introduce 
(column 1) and the log-transformed number of (column 2) new (or significantly improved) products during the relevant four-year period and 
R&D expenditure (column 3). Regressions in columns 1-2 include controls for R&D expenditure, firm size, export intensity, foreign ownership 
and year dummies. Regression in column 3 include controls for firm size, investment in industrial equipment, export intensity, foreign 
ownership, firm and year dummies. * p<0.10, ** p<0.05, *** p<0.01 
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Table 5. Robotisation and different types of product innovation: lead-lag specification 
 (1) (2) (3) 

Robot t+4 -0.017 0.033 0.013 
 [0.033] [0.028] [0.030] 
Robot -0.006 -0.033 0.008 
 [0.035] [0.032] [0.030] 
Robot t-4 0.025 0.007 -0.029 
 [0.036] [0.034] [0.036] 
Robot t-8 -0.042 -0.075** -0.116*** 
 [0.037] [0.038] [0.035] 
R&D Exp 0.014*** 0.016*** 0.016*** 
 [0.003] [0.003] [0.003] 
Size 0.000 0.000 0.000 
 [0.000] [0.000] [0.000] 
Export Int 0.151 0.062 0.039 
 [0.138] [0.142] [0.141] 
Foreign Own 0.006 0.014 -0.013 
 [0.022] [0.021] [0.024] 
Invest Mach 0.002 0.002 0.002 
 [0.003] [0.003] [0.003] 
Constant 0.099* 0.116** 0.135** 
 [0.056] [0.052] [0.059] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 3.458 3.748 4.355 
R-sq 0.117 0.145 0.160 
N firm-year obs 2304.000 2304.000 2304.000 
N firm-year 983.000 983.000 983.000 

Notes: Standard errors are clustered at the firm level. Estimation is by TWFE estimator. The dependent variable is whether the firm introduced 
products with new (or significantly improved) materials (column 1), components (column 2) or functions (column 3) during the relevant four-
year period. All regressions include controls for R&D expenditure, firm size, investment in industrial equipment, export intensity, foreign 
ownership, firm and year dummies.* p<0.10, ** p<0.05, *** p<0.01 
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Table 6. Robotisation, product innovation and R&D: small-scale investment (bottom quartile) 
 (1) (2) (3) 
Robot_p25 t+4 0.029 -0.014 0.200 
 [0.053] [0.035] [0.254] 
Robot_p25 -0.024 -0.053 0.287 
 [0.063] [0.035] [0.365] 
Robot_p25 t-4 -0.086 -0.065 0.323 
 [0.065] [0.041] [0.348] 
Robot_p25 t-8 -0.166** -0.099** -0.732* 
 [0.073] [0.042] [0.394] 
R&D Exp 0.016*** 0.026***  
 [0.005] [0.004]  
Size 0.000 0.000 0.004*** 
 [0.000] [0.000] [0.001] 
Export Int -0.126 -0.185 1.629 
 [0.213] [0.152] [1.659] 
Foreign Own 0.017 -0.014 -0.285 
 [0.034] [0.027] [0.191] 
Invest Mach 0.003 0.003 0.058 
 [0.006] [0.004] [0.037] 
Constant 0.376*** 0.310*** 4.088*** 
 [0.103] [0.061] [0.610] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 5.023 7.869 2.268 
R-sq 0.054 0.085 0.033 
N firms 978.000 978.000 978.000 

Notes: Standard errors are clustered at the firm level. Estimation is by TWFE estimator. The dependent variable is the probability to introduce 
(column 1) and the log-transformed number of (column 2) new (or significantly improved) products during the relevant four-year period and 
R6D expenditure (column 3). Regressions in columns 1-2 include controls for R&D expenditure, firm size, export intensity, foreign ownership 
and year dummies. Regression in column 3 include controls for firm size, investment in industrial equipment, export intensity, foreign 
ownership, firm and year dummies. * p<0.10, ** p<0.05, *** p<0.01 
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Table 7. Robotisation, product innovation and R&D: large-scale investment (top quartile) 
 (1) (2) (3) 
Robot_p75 t+4 0.062 0.053 0.658 
 [0.083] [0.058] [0.403] 
Robot_p75 -0.077 -0.041 0.806* 
 [0.095] [0.061] [0.470] 
Robot_p75 t-4 -0.103 -0.073 0.700* 
 [0.076] [0.065] [0.396] 
Robot_p75 t-8 -0.099 -0.029 -0.583 
 [0.109] [0.062] [0.550] 
R&D Exp 0.017*** 0.027***  
 [0.005] [0.004]  
Size 0.000 0.000 0.003** 
 [0.000] [0.000] [0.001] 
Export Int -0.111 -0.179 1.513 
 [0.211] [0.152] [1.659] 
Foreign Own 0.023 -0.011 -0.307 
 [0.036] [0.028] [0.194] 
Invest Mach 0.003 0.002 0.053 
 [0.006] [0.004] [0.038] 
Constant 0.358*** 0.295*** 4.247*** 
 [0.100] [0.062] [0.622] 
Firm FEs Inc. Inc. Inc. 
Time FEs Inc. Inc. Inc. 
F 5.482 8.345 2.403 
R-sq 0.051 0.084 0.036 
N firms 978.000 978.000 978.000 

Notes: Standard errors are clustered at the firm level. Estimation is by TWFE estimator. The dependent variable is the probability to introduce 
(column 1) and the number of (column 2) new (or significantly improved) products during the relevant four-year period and R6D expenditure 
(column 3). Regressions in columns 1-2 include controls for R&D expenditure, firm size, export intensity, foreign ownership and year 
dummies. Regression in column 3 include controls for firm size, investment in industrial equipment, export intensity, foreign ownership, firm 
and year dummies. * p<0.10, ** p<0.05, *** p<0.01  
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Table A1. Descriptive statistics by year of adoption of robot technologies 

 1994 1998 2002 2006 2010 2014 Total 

 n=116 n=189 n=207 n=210 n=256 n=181 n=1159 

Number of product innovations 6.00 8.00 1.69 1.70 2.04 0.90 3.11 

[37.9] [46.37] [8.35] [6.51] [15.18] [3.92] [23.9] 

New product introduction 0.69 0.62 0.4 0.41 0.35 0.29 0.44 

 [0.46] [0.49] [0.49] [0.49] [0.48] [0.46] [0.5] 

Investment in machinery (thous.) 2666.40 4254.98 3456.57 3481.27 1293.05 1349.50 2705.22 

[6085.34] [8979.87] [9263.54] [14663.57] [3088.24] [2615.56] [8679.64] 

R&D investment (thous.) 988.08 1437.08 1246.07 791.69 1065.94 1420.43 1156.51 

[3522.28] [4889.44] [4857.64] [3841.7] [6047.28] [7322.72] [5330.72] 

FTE employees 447.81 481.28 384.47 323.14 242.84 247.25 342.77 

[784.31] [824.68] [657.31] [620.21] [358.31] [406.24] [616.41] 

Export intensity 0.24 0.28 0.27 0.26 0.26 0.31 0.27 

[0.22] [0.26] [0.27] [0.27] [0.28] [0.3] [0.27] 

Foreign ownership (%) 28.72 29.26 30.04 23.28 21.61 18.06 24.82 

[41.21] [41.82] [43.89] [40.88] [39.32] [36.15] [40.74] 

  



34 

Figure A1. Robotisation and product innovation: de Chaistemartin and D’Haultfoeuille (2022) 
estimator 

 

Notes: Standard errors are clustered at the firm level. Estimation is by de Chaisemartin and D’Haultfoeuille (2022) estimator, which is unbiased 
under treatment heterogeneity and the presence of reversals (groups switching in and out of treatment). The dependent variable are: i) the 
number of new (or significantly improved) products introduced during the relevant four-year period (upper-left panel); ii) a dummy variable 
taking value one when the firm introduced new (or significantly improved) products at least once during the relevant four-year period, and 0 
otherwise (upper-left panel) and iii) the amount invested in R&D (bottom-left panel). All regressions include controls for R&D expenditure, 
firm size and investment in industrial equipment. The share of foreign ownership and export intensity are not included as controls due to lack 
of convergence in the computation of bootstrapped standard errors. 
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Figure A2. Robotisation and different types of product innovation: de Chaistemartin and 
D’Haultfoeuille (2022) estimator 

 

Notes: Standard errors are clustered at the firm level. Estimation is by de Chaisemartin and D’Haultfoeuille (2022) estimator, which is unbiased 
under treatment heterogeneity and the presence of reversals (groups switching in and out of treatment). The dependent variable are whether 
the firm introduced products with new (or significantly improved) materials (upper-left panel), components (upper-right panel) or functions 
(bottom-left panel) during the relevant four-year period. All regressions include controls for R&D expenditure, firm size and investment in 
industrial equipment. The share of foreign ownership and export intensity are not included as controls due to lack of convergence in the 
computation of bootstrapped standard errors. 
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Figure A3. Robotisation, R&D and product innovation: de Chaistemartin and D’Haultfoeuille (2022) 
estimator for small-scale investment (bottom quartile) 

 

Notes: Standard errors are clustered at the firm level. Estimation is by de Chaisemartin and D’Haultfoeuille (2022) estimator, which is unbiased 
under treatment heterogeneity and the presence of reversals (groups switching in and out of treatment). The dependent variables are: i) the 
number of new (or significantly improved) products introduced during the relevant four-year period (upper-left panel); ii) a dummy variable 
taking value one when the firm introduced new (or significantly improved) products at least once during the relevant four-year period, and 0 
otherwise (upper-left panel) and iii) the amount invested in R&D (bottom-left panel). All regressions include controls for R&D expenditure, 
firm size and investment in industrial equipment, except for R&D investment where we control only for firm size (due to lack of convergence 
in the computation of bootstrapped standard errors). The main explanatory variable refers to small-scale robotisation: when the adoption of 
robots coincides with an investment in industrial equipment within the first quartile. 
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Figure A4. Robotisation, R&D and product innovation: de Chaistemartin and D’Haultfoeuille (2022) 
estimator for large-scale investment (top quartile) 

 

Notes: Standard errors are clustered at the firm level. Estimation is by de Chaisemartin and D’Haultfoeuille (2022) estimator, which is unbiased 
under treatment heterogeneity and the presence of reversals (groups switching in and out of treatment). The dependent variables are: i) the 
number of new (or significantly improved) products introduced during the relevant four-year period (upper-left panel); ii) a dummy variable 
taking value one when the firm introduced new (or significantly improved) products at least once during the relevant four-year period, and 0 
otherwise (upper-left panel) and iii) the amount invested in R&D (bottom-left panel). All regressions include controls for R&D expenditure, 
firm size and investment in industrial equipment, except for R&D investment where we control only for firm size (due to lack of convergence 
in the computation of bootstrapped standard errors). The main explanatory variable refers to large-scale robotisation: when the adoption of 
robots coincides with an investment in industrial equipment above the upper quartile. 
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